Future directions of LHC analyses

Spyros Argyropoulos

on behalf of the ATLAS and CMS collaborations

DM@LHC 2017, UCI 3-5 April 2017

- LHC schedule up to 2035 (Run 3 and High Luminosity LHC)
- Planned **upgrades**
- Projections for Run 3 and HL-LHC
 - Higgs
 - SUSY
 - Exotic final states

LHC schedule

Run 2

- $\sqrt{s} = 13$ TeV
- L= $1.7 \cdot 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
- 25-50 interactions per crossing
- \bullet goal: > 120 fb^{-1} till end of 2018

HL-LHC

- $\sqrt{s} = 14$ TeV
- L= $5 \cdot 10^{34}$ cm⁻²s⁻¹ (7.5 $\cdot 10^{34}$ cm⁻²s⁻¹ ultimate achievable luminosity)
- 140 (200) interactions per crossing
- goal: **3000 fb**⁻¹ till end of 2035

Run 3

- $\sqrt{s} = 13/14$ TeV
- L=2·10³⁴ cm⁻²s⁻¹
- 60 interactions per crossing
- goal: **300 fb**⁻¹ till end of 2022

Detector upgrades

Phase I Upgrade

- ATLAS: track trigger (FTK), partial replacement of muon spectrometer, finer LAr trigger segmentation
- CMS: changes in trigger hardware

Phase II Upgrade

- ATLAS: new inner tracker with extended η coverage, trigger and calorimeter upgrades, potentially new calorimeter/timing detector in forward region
- CMS: new tracker with extended coverage, new end-cap calorimeters and extension of η coverage of muon spectrometer, replacement of ECal and Muon spectrometer electronics

Note:

- * Studies here consider scenario with $<\mu>=60/140$ for Run-3/HL-LHC
- * projections err on the conservative side better results to be expected with a more aggressive analysis strategy

- have enough statistics to establish all production and decay modes
 - 4% uncertainty on ggH attainable \Rightarrow stringent constraint on BSM processes
 - ttH measurable with 10% uncertainty \Rightarrow precise determination of top Yukawa coupling
- move from signal strength like measurements to more <u>model-independent cross-</u> section measurements: (i) fiducial, (ii) simplified template

Δμ/μ	300 fb ⁻¹	3000 fb ⁻¹
gg→H	6 - 12 %	4 - 11 %
VBF	15 - 18 %	9 - 15 %
WH	41%	18%
qqZH	80%	27 - 28 %
ggZH	4%	1.4 - 1.5 %
ttH	30%	10 - 16 %

ATL-PHYS-PUB-2014-016

- midpoint between Run-1 style coupling measurements (powerful but model dependent) and differential measurements

Guiding principles

• minimize theory dependence

- measure σ instead of $\mu = \sigma/\sigma_{SM}$ (easier to compare with newer calculations etc)
- do not assume SM properties for Higgs (use more general model, e.g. EFT)
- measure in fiducial volume
- separate bins which receive large BSM contributions
- maximize sensitivity
 - combine all decay channels

ATLAS Preliminary m_H=125.09 GeV \sqrt{s} =13 TeV, 13.3 fb⁻¹ ($\gamma\gamma$), 14.8 fb⁻¹ (ZZ) Observed 68% CL SM Prediction σ_{ggF} σ_{VBF} ATLAS-CONF-2016-081 σ_{VHhad} σ_{VHlep} $\sigma_{\rm top}$ 1 -5 -4 -3 -2 -1 0 2 3 5

Parameter value norm. to SM value

- measurement in **fiducial volume** ⇒ minimize theory-dependent extrapolations
- **unfolding** of detector effects ⇒ long-term usability of results
- slicing of phase space to address different modelling issues
 - specific phase space slicing to enhance production modes and sensitivity to BSM models
 - Higgs kinematics: $p_T(h) \Rightarrow$ perturbative QCD, $|y(h)| \Rightarrow$ PDF
 - $N_{\text{jets}} \Rightarrow$ sensitive to relative contributions of different production modes
 - angular variables: spin/CP properties

New physics through Higgs couplings

• **new physics** coupling to the Higgs sector **⇒ modification of the Higgs couplings**

- Higgs compositeness (e.g. $\kappa_V{=}(1{\text -}\xi)^{1/2})$
- 2 Higgs Doublet Models (e.g. $\kappa_V = sin(\beta \alpha)$)
- Higgs-portal DM
- precision coupling measurements indirectly probe and can constrain BSM models

2 Higgs Doublet Models

9

Higgs pair production

- hh production one of the main goals of HL-LHC
- gives access to trilinear Higgs coupling λ_{hhh};
 needed for fully reconstructing the shape of
 the Higgs potential
- Very low cross-section only possible in HL-LHC
- 3 channels
 - bbbb : BR = 33% (41k expected events)
 - $bb\tau\tau$: BR = 7.4% (9k expected events)
 - $bb\gamma\gamma$: BR = 0.3% (330 expected events)
- CMS expected combined significance: 1.9 σ CMS-PAS-FTR-15-002
- ATLAS: limits on trilinear coupling with different scenarios for systematic uncertainties

ATL-PHYS-PUB-2017-001 ATL-PHYS-PUB-2016-024 ATL-PHYS-PUB-2015-046 bbbb [fb]

dd

<u>SUSY</u>

Supersymmetry

Advocated as candidate theory to resolve

- gravity/QFT unification
- gauge coupling unification
- naturalness in the scalar sector of SM \Rightarrow gluinos/squarks with m \lesssim 1 TeV
- Very complicated parameter space
 - use signature-based simplified models
- First line of attack
 - strongly produced sparticles (large cross-section)

Pair-produced gluinos

- focus on R-parity conserving models
- long decay chains leading to multiple jets, E_T^{miss} and no leptons
- expected 5σ discovery for gluino masses up to 2
 (2.35) TeV for 300 (3000) fb⁻¹
- \bullet can exclude gluino masses up to 2.9 TeV with 3000 fb^{-1}

3rd generation squarks

- Need stops with m ≤ 1 TeV to cancel large radiative corrections to Higgs mass (naturalness)
- Expect 5σ discovery up to 1.1 (1.3) TeV for sbottom quarks and 0.9 (1.1) TeV for stops at 300 (3000) fb⁻¹
- Also studied sensitivity to compressed mass spectra exclusion limits for stop mass up to 500 (700) GeV ATLAS-PHYS-PUB-2016-022

 \bullet Exclusion limits expected to surpass 1 TeV for 3000 fb^-1

Neutralinos/Charginos

• EW production of SUSY particles has low cross-section but becomes important at high luminosities

• Signatures:

- WZ-mediated: 3 leptons
- Wh-mediated: 1 lepton + 2 taus/2 b-jets
- 5σ discovery: chargino masses up to 550 (800) GeV at at 300 (3000) fb⁻¹
- Exclusion: chargino masses up to 800 (1100) GeV at 300 (3000) fb⁻¹

- High luminosity will allow to probe rare processes and higher masses
- EW production of SUSY particles will become important in HL-LHC
- Small gain from increase of c.o.m. energy will enhance SUSY production rates
- HL-LHC to put tight constraints on natural SUSY

Approximate 95% CLs exclusion limits				
Luminosity	Gluino	Stop	Light squarks	
Current	2 TeV	1 TeV	2 TeV	
300/fb	2.4 TeV	1.4 TeV	2.4 TeV	
3000/fb	2.9 TeV	1.8 TeV	2.9 TeV	

Exotics

Di-jet resonances

- Plethora of new physics models predicting resonances decaying to 2 jets: quantum black holes, excited quarks, Z'/W' bosons, W* bosons
- Greatly profit from increase in c.o.m energy
- Look for:
 - bumps in m_{jj}
 - deviations from flat distribution in $\chi = \exp|y_1 y_2|$
- \bullet Here: sensitivity projections using m_{jj} spectrum
 - $m(q^*) > 6$ TeV (current) \rightarrow 7-8 TeV (Run 3 HL-LHC)
 - m(QBH) > 9 TeV \rightarrow 10-10.5 TeV

- Resonances decaying to top quarks arise in several BSM extensions: topcolor, Kaluza-Klein gluons
 - Lepton+jets channel used: 1lep + 1 small-R jet + 1 large-R jet (topcandidate)
 - $p(t\bar{t}) = p^{\text{lep}} + p^{\nu} + p^{\text{jet}}_{\text{small}-B} + p^{\text{jet}}_{\text{large}-B}$
- Di-lepton decays of new resonances (e.g. Z') also easy to reconstruct
- Expected discovery of Z' up to 5-6 TeV
- Exclusion limit for Z' increased by 1 TeV with 10x more luminosity

7000

19

m(Z') [GeV]

WIMP Dark Matter

- Principle of detection: reconstruction of object (γ , jet, lepton, Higgs) recoiling against MET from WIMPs
- 2 approaches:
 - **EFT**: low-energy non-renormalizable theory only valid

for $Q < \sqrt{g_{\rm SM}g_{\rm DM}}M_* < 4\pi M_*$ (taken into account when comparing with other experiments)

• Simplified models: mediator not integrated out, defined in terms of masses, couplings and spin of mediator/DM particles

➡ We don't only need to collect more data; we need to reduce the systematics too!

Mono-jet and mono-lepton exclusion limits

- Simplified models allow to cover more of the parameter space when compared to EFT
- Limits competitive at low m_x compared to non-collider experiments

• 50% improvement in limits expected with 3000 fb⁻¹

Summary

- Increase in luminosity will allow to
 - probe channels with low cross-section
 - significantly increase discovery potential/expected exclusion limits
- Higgs: what was once a search becomes a measurement
 - shift towards precision and model-independence
- \bullet Hopefully we'll be soon be able to say the same for $\ensuremath{\text{SUSY}}$ and $\ensuremath{\text{Exotics}}$
 - till then expect significant improvement on discovery potential/ exclusion limits
- Improving detector performance/modelling quintessential for ensuring a broadened physics reach in the HL-LHC - requires input from both the experiment & theory community